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The transverse vibrations of an elastic rod, to one of which displacements are applied while the other end is free, are investigated. 
It is assumed that the propagation velocity of the perturbations in the rod is finite. The unperturbed part performed rotational 
motion around the centre line. The angle of rotation is expressed by the angle of curvature of the centre line of the perturbed 
part of the rod. Two types of elastic vibrations are obtained: (1) the rod vibrates elastically due to displacements applied at the 
end, and (2) when performing rotational motion elastic vibrations and additional forces occur in the rod due to elasticity [l]. 
© 2000 Elsevier Science Ltd. All rights reserved. 

Consider the transverse vibrations of an elastic rod of length l, when a displacementA sin cot is applied to one end, 
while the other end is free. We will consider a solution of the form 

w (t, y) = Wl(t, y) + A sin tot 

The function Wl(t, y) must satisfy the following inhomogeneous equation with boundary and initial conditions 

3t 2 ~ ~ = A t o  2s in to t  c 2 =  • c ~y4 ~ (1) 

w l ( t , O ) = O ,  ~ w l ( t ' O ) =  0 
3y 

~2wt ( t ' l )  = O, ~3Wl(t ' l )  = 0 
~y2 3y3 (2) 

wl(O,y  ) = O, wl (O,y)  = - A t o  (3) 

Here c is a constant  coefficient, E is the modulus of elasticity of the material, J is the moment  of inertia, p is the 
density and F is the cross-section area of the rod. 

The solution of Eq. (1) with the given right-hand side will be sought in the form of a sum 

w I ( t , y )  = ~ 0 m ( t )Z  m (y)  (4) 
m=l 

where Zm(Y) is the mth natural  mode of oscillation, Ore(t) is the coefficient of dynamic increment in the ruth natural 
mode of oscillation and m = 1, 2 , . . . .  

The eigenfunctions Zm(y) are constructed taking into account their orthogonality with weight n(y) in the section 
[0, 1]. After  separating the variables, Eq. (1) reduces to a system of ordinary differential equations which contains 
the natural  frequency of the mth mode of oscillation k m = C~2m . The  general solutions of this system corresponding 
to boundary  and initial conditions (2) and (3) are well known and have the form 

Z m (y)  = A m[U(~tmy / l) - 9mV(gmY //)]  

1 t 
0n(t) = C m s i n k , , t + - - S  dPm('C)sinkm(t-x)dz 

km o 

Cm = Ato ~ Zm(y)dy  ' ~ m ( t ) = _ t o k m C m s i n t o  t 2 
krnlXm 0 

tPrikL Mat. Mekh. Vol. 63, No. 6, pp. 1055-1058, 1999. 

989 



990 K. Sh. Mkrtchyan 

13 m : sh I.tm - sin tx m , I-t., = ~..,l 
ch ~m + cos gm 

where lain are the roots of the equation ch p. cos ~t + 1 = 0. 
In the case considered the weight n(y) = 1, and U(.) and V(.) are Krylov functions (2). 
The constants A m are found from the conditions for the eigenfunctions to be orthogonal. 
After reduction, we can represent the solution of this problem in the form 

w I (t, y) = ~ AOY~m[~rnZm(Y) (cosin cot - krn sin k.,t) (5) 
m=~ ~m(k~-co 2) 

4(Chkml + C°Skm 1)2 Zm(y ) = Zm(Y) 
)'m = /sh 2 ~,m/sin 2 ~,,n I , Am 

It can be seen that the vibrations consist of two parts: forced vibrations, proportional to sin ot, and free vibrations 
proportional to sin kmt. 

When the frequency of the perturbing force is approximately equal to one of the natural vibration frequencies, 
a resonance occurs. 

The linear integro-differential equation of motion and the equation of the elastic transverse vibrations of the 
rod in the case of high bending stiffness have the form [1] 

l l 
pF~ y(y(p + w 2)dy = M(t) - pgF S (y cos tp - w 2 sin (p)dy (6) 

0 0 

02W2 
I- c 2 ~ = -y/~ - g cos (p (7) 

3t 2 ~y 

with boundary and initial conditions 

3w2 (t, 0) = 0 
w 2 (t, 0) = 0, Oy 

O2w2(t,l) oaw2(t,l) 
~y2 =o, ~y3 =o 

w2(O,y ) = 0, ~i,2(0,y) = 0 

(8) 

(9) 

Here 

3w l(t, y') Y" = I ot - 2kl when t > 2kl[v 
q)(t) = Oy ' _2(k + 1)l - v t  when t < 2(k + 1)//v 

k = 0 , 1  . . . .  

(u is the propagation velocity of flexural waves along the rod [3]). 
Boundary-value problem (7)-(9) can be solved in a similar way. 
We obtain the following differential equation for the coefficients 0re(t) 

2 I OIm(t) + kmOm(t) = ~ [ t ]  (10) 

dplm[t] I t = - ~ I (Y/I) + g cos ~0)Z,, (y)dy 
~ m  0 

(the square brackets [t] denote that the function aPtm depends implicitly on time). 
Constructing the solution of Eq. (10) with initial conditions (9) we conclude that the elastic vibrations of the 

rod during motion are given by the formula 

w2(t'Y)= rn=l ~ k•m ['l-;~-i 0 ~]m['C]sinkm(t-z)dx] z'n(y) (11) 

Solution (11), after reduction, can be represented in the form of the sum of forced and free vibrations, due to 
the perturbing forces Om[t ]. 
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Z : i / ~  
[ ~ ~ ~ / ~ / / " ~  °9 ='ys-t  / / p  

L7 

2 i 
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Fig. 1. 

Due to various forms of resistance, the free vibrations will gradually decay and only the forced vibrations are 
of practical value. Omitting the details, we will represent the forced vibrations (ignoring the inherent weight) when 
t > 2kl/t), (k = 0, 1 . . . .  ) from general solution (11) in the form 

2 2 - -  

w 2 ( t , y ) =  ~ A~2 Tm~mZ~(:)[O3ml(am)sin¢o t+Om2(am)coscOt  ] (12) 
m=l If, m((O --k.m) 

Oral (a m ) = l + (sh a m - ~m ch a m )(bmd~, [ 2 + 2r12¢02) + 

+/m(sinam +~m + ÷ 2-2112¢02) cos a m )( bmd m / 

2 - - 

O mz (a m) = rlmkmO~ 2[ l m (cos a m - lira sin a m) + l+m (ch a m - ~ msh am)] 

l + = {[°I]2 "I- ((D-I- km)2][l] 2 q"((D-km)2]} -I 

v = e 4 - ~ ,  a . ,  = ~.,~ ( v t -  2~t) 

The  forced vibrations when t < 2(k+ 1)//u can be obtained using (12) by replacing k and u by - (k+  1) and -u. 
When the denominator of the mth terms of series (12) becomes equal to zero, the frequency of the perturbing 
force will be approximately equal to one of the values ofkm, (3 - 2 "~2)kin (m = 1, 2 . . . .  ), which are found from 
the condition (Fm) -I = 0. In this case we obtain a state of resonance. 

Comparing problem (1)-(3) with problem (7)-(9) we obtain new values of (3 - 2 "~2)km for the state of resonance. 
To compare the two types of forced vibrations described by (5) and (-12) we carried out numerical calculations 

for two modes of vibration of a steel rod of circular cross-section as a function of time for various values of the 
frequency co. 

The results are shown in the figure fory = 700 cm. Curves 1 and 2 represent the behaviour of l w~ [ and [ w2 1, 
i.e. the absolute values of the forced vibrations of the rod, calculated from (5) and (12) respectively. Curve 3 
represents [ w3 ] = I Wl + w2 I- It can be seen that the values of the buckling [ We I is higher than the bucklings Iwll 
and Pw21, and value of I wi I initially falls and then increases sharply as t increases. The greatest absolute value of 
rw21 is 3.14 times greater than Iwll and 1.47 times greater than Iw31. 

In the calculations using formulae (5) and (12) we took the first six terms of the series for the following values 
of the parameters: A = 1 cm, l = 700 cm, E = 2 × 106 kg/cm 2, p = 7.8 × 10 -3 kg/cm 3, external diameter of the rod 
di = 30 cm and internal diameter of the rod d2 = 28.6 cm. 
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